A iJOVEL DIOXETAIIE-HYDROPEROXIDE REARRANGEMENT : **PHOTOOXYGENAT** I ON **OF** 3-TERT-BUTOXY (AND METHOXY)-6,7-BENZOBICYCLO^{[3},2,1[]]OCTA-2,6-DIENES

Metin **Balcl*,** Yavuz Taskesenliqil and Mansur Harnandar

Faculty of Science, Department of Chemistry, *Atattirk University, Erzurum, Turkey*

Summary: The dioxetanes 1 and 2 have been synthesized by photooxyyenation of the correspondiny enol ethers 5 and 6. 1 decomposed upon heating to the unexpected hydroperoxide 7 where 2 af*forded the expected aldehyde-ester 12. The striking behavior of these dioxetanes has been discussed in terms* **of** *steric factors.*

Despite extensive investigation of pnotooxygenation of conjugated and other unsaturated systems, dioxetanes remained as intermediates until 1968. Since then well over a hundred sta**ble derivatives of dioxetanes have been isolated and characterized'. Host have been prepared** by Kopecky's method², closure of the β -halohydroperoxides with base or silver salt. The clas**sic Kopecky metnod of dioxetane synthesis from alkenes is the route of choice in tne prepara**tion of many simple substituted dioxetanes. Many dioxetanes have also been prepared by the addition of singlet oxygen to electron-rich olefins such as enol ethers and, enamines^{1,3}.

The characteristic reaction of the dioxetanes is the chemiluminescent thermal decomposition to two carbonyl fragments. Dioxetanes undergo also a number of normal peroxide reactions **(metal ion catalysis, rearrangement, and reduction by insertion into the peroxide bond) in** which no excited states are generated. In this reactions, dioxetanes show enhanced reactivity as compared to that of dialkyl peroxides presumably because of the strain of the ring system.

In this paper, we describe the synthesis of two new dioxetanes 1 **and 2 and unusual thermal rearrangement of 1 to 7.**

t

3-Bromo-6,7-benzobicyclo^[3.2.] octa-2,6-diene 3 was prepared by published method⁴ and sub**jected to dehydrobromination with potassium tert-butoxide. Enol ether 5 was formed as the sole** product. In an earlier publication⁵ we reported that the denydrobromination of 3 gives rise to **the strained bicyclic allene 4 which was trapped by tert-butanol to form enol ether 55** . **At**tempted synthesis of 6 in the same way using NaOCH₃ as base did not reveal the formation of **6. However, 6 was obtained as a mixture with 5 by using potassium tert-butoxide and sodium methoxide in a ratio of 1:l. 5 and 6 were separated after column chromatography (Alumina, Gra**de III, eluting with petroleum ether) in yields of 10% and 17%, respectively. The products were identified by means of their spectral data and ready hydrolysis to the known ketone 10⁴ with **dilute HCl.**

The enol ethers 5 and 6 in aprotic solvent (carbon tetrachloride) at -15 'C reacts rapidly and in high yields with singlet oxygen giving the corresponding dioxetanes 1 and 2. The dioxetanes 1 and 2 have been characterized by means of their ¹H-NMR data⁶ and chemical reactions. **The cnaracteristic down field chemical shift (6: 4.86 and 4.90 ppm in** 1 **and 2) of tne proton** directly attached to the dioxetane ring can be clearly seen. H₂ proton resonances in 1 and 2 appear as a doublet of doublets. The first splitting (J = 3.6 Hz) is arising from the bridgehead proton H₁. The second splitting originates from the internal proton H_R (J = 1.1 Hz). The

fact, that a coupling between H_{od} and H₂ is existing due to the M or W arrangement' indicates the proton H₂ which in turns proves the exo-configuration of the dioxetane rings.

On warm-up to room temperature, the dioxetane 1 decomposes. The 'H-NMR spectrum of tne decomposition product is consistent only with the structure 7 not with the expected product $\,$ 1. **The structure of the hydroperoxide 7 has been secured by** double **resonance experiments. Furthermore, reduction of hydroperoxide 7 with triphenylphosphine gave the corresponding alcohol 8 and subsequent hydrolysis witn HCl afforded the exo-ketol 9 whose structure has been determined on** the basis of ¹H- and ¹³C-NMR data. The dioxetane 2 was quite stable at room temperature in solution. Upon heating to 50-60 ^OC it decomposed to the expected aldehyde-ester 12. The attempted **isolation of 12 failed. On the other hand, both dioxetanes 1 and 2 were treated with Cobalt(II)- Cetraphenylporphyrine' at low temperature.** In **both cases, the corresponding aldehyde-ester 11 and 12' were formed** , **although again isolation of these products failed.**

Our results indicate clearly striking differences in the thermal behavior of the dioxetanes 1 and 2. The first one rearranges to the hydroperoxide 7 and the second one decomposes to alde**hyde-ester. Thermal isomerization of endoperoxides to dioxetanes have been reported in the lite**rature¹⁰ but not the inverse case. More recently, dioxetane-hydroperoxide rearrangement has **been observed by Krebs" in the case of cyclobutadiene-dioxetane. However, this rearrangement** was catalyzed by HCl. To the best of our knowledge, we observe for the first time in the lite**rature a dioxetane-hydroperoxide rearrangement under thermal conditions. The fact, that this rearrangement occurs under the exactly same reaction conditions only with** 1 **not with 2, indicates clearly that the steric factors arising from tert-butyl group play a dominating role for** this unprecedented dioxetane-hydroperoxide conversion. Baumstark¹² and Lechtken¹³ have observed **that the stability of dioxetanes can be influenced by steric effects. An explanation was sugges**ted in which steric interactions force the conformation of the substituent toward a twist boat **which is resulting in lowering activation energy of the O-O bond cleavage, In the case of 1 steric repulsion is determining the mode of the decomposition reaction.**

ACKNOWLEDGEMENT: The authors are indebted to Department of Cnemistry, Atatbrk University for financial support of this work and to i4r. Sahmettin Ylldlz for technical assistance.

REFERENCES AND NOTES

- **1) For recent reviews see:**
	- **a) Saumstark, A.L. In Singlet Oxygen: Reaction Modes and Products; Vol. II; Frimer, A.A., Ed.; CRC Press, 1083; Chapter 1.**
- **b) Adam, W. In the Chemistry of Functional Groups, Peroxides; Patai,** S. Ed.; Wiley: **Chichester, 1983; Chapter 24.**
- **2) a) Kooecky, K.R.; Mumford, C. can. J.** *Chem.* **1969, 47, 709.**
	- **b) Kopecky, K.R.; Filby,** J.E.; **Mumford, C.; Lockwood, P.A.; Ding, J.-Y. Can. J.** *Chem.* **1975, 53, 1103.**
- **3) Bartlett, P.D.; Landis, M.E. In Singlet Oxygen, Wasserman, H.H.; Murray, R.W., Eds.: Academic Press, Hew York, 1979, Chapter 7.**
- 4) Kitahonoki, K.; Takano, Y.; Matsuura, A.; Kotera, K. Tetrahedron, 1969, 25, 335.
- **5) Balci, 14.; Harmandar, M.** *Tetrahedron Lett.* **1984, 25, 237.**
- **6)** $6:$ colorless liquid, ¹H-NMR (60 MHz, CC1_A, TMS); δ 1.63-2.66 (m, 4H), 3.15 (s, 3H), 3.15 $(m, 2H)$, 4.8 (d, 1H), 6.73-7.15 (m, 4H); IR (CC1₄, cm⁻¹) 3065, 2960, 1640, 1470, 1370, **1210, 1170, 1120, 1040.**

 $\frac{1}{1}$: ¹H-NMR (60 MHz, TMS, CC1₄), 1.3 (s, 9H), 1.5-3.5 (m, 6H), 4.86 (dd, 1H), 6.95 (s, 4H). $\frac{1}{2}$: ¹H-NMR (60 MHz, TMS, CC1₄), 2.0-3.5 (m, 6H), 3.43 (s, 3H), 4.90 (dd, 1H), 6.73-7.10 **(m, 4l-l).**

 $7:$ colorless liquid; ¹H-NMR (60 MHz, TMS, CCl_d) 1.25 (s, 9H), 2.14 (m, 2H), 3.30 (m, 1H), **3.67 (m, lH), 4.1 (d, lH), 5.6 (d, lH), 6.86-7.40 (m, 4H), 91. (s, l/i);** IR **(neat, cm-'); 3420, 3043, 3020, 2980, 1640, 1390, 1370, 1250, 1150, 1020.**

9: colorless solid; mp 93-94 ^OC from CH₂Cl₂/n-hexane; ¹H-NMR (360 MHz, CDCl₃, TMS) 2.30 **(dtt, A-part of AD-system, IH), 2.37 (d, B-part of A3-system, lil), 2.45 (br. d, A-part of AB-system, lH), 2.93 (ddd, B-part of AB-system, lH), 3.43 (m, lH), 3.50 (m, lH), 3.9 (dd, IH), 7.16-7.35 (m, 4H); 13C-NMR (90 IMHz, TMS, CDC13) 211.14, 148.03, 142.23, 128.10, 127.64,** 124.49, 123.41, 77.00, 46.52, 46.40, 39.30, 36.22; IR (KBr, cm⁻¹) 3620, 3090-3040, 2970, **1730, 1470, 1420, 1230, 1050. MS (70 eV) m/e 188.**

- **7) Balci, M.; Harmandar, M.** Tetrahedron, **1988, 44, 3645.**
- **8) Siitbeyaz, Y.; Secen, I-1.; Balci, M.** *.7. org.* **chem.1988, 53, 2312.**
- **9) 11: 'H-NMR (60 MHz, CC14, TMS) \$ 1.4** (s, **9H), 1.8-2.63 (m, 4H), 3.25 (m, lH), 3.65 (m, IH), 7.1** *(s,* **4H), 9.53 (d, Iii).** 12: ¹H-NMR (60 MHz, TMS, CC1₄) 6 1.7-2.9 (m, 4H), 3.2-3.8 (m, 2H), 3.56 (s, 3H), 7.1 (s,

AH), 9.50 (d, 1H).

- **10) a) Schaap, A.P.; Burns, P.A.; Zazlika, K.A.** *J. Am.* them. sot. **1977, 99, 1278. b) Hakamura, H.; Goto, T.** *Photochem. Photobiol. 1979, 30,* **27. c) Balci, M.** *Chem.* **~ev.1981, 81, 91.**
-
- 11) Krebs, A.; Schmalstieg, H., Jarchow, O.; Klaska, K.-H. *Tetrahedron Lett.* 1980, 3171.
- 12) a) Baumstark, A.L.; Wilson, C.E. *Tetrahedron Lett.* 1981, 4363. **b) Baumstark, A.L.; Wilson, C.E.** *Tetrahedron Lett.* **1979, 2569.**
- **13) Lechtken, P.; Reissenweber, G.; Grubmuller, P.** *Tetrahedron Lett.* **1977, 2881.**

(Received in UK 11 May 1989)